不同投票制度有不同形式的选票。在次序投票制里,如同排序复选制和波达计数法(Borda Count),选民根据支持程度将选项排序。而在计分投票制(Range voting)里,选民则给每个选项评分。在多数制(也被称为“票者当选制”)中,选民只能选择一个项目;而在认可投票制里,选民可以选择任何候选项目;在与能投票制中,选民可以在选票上圈选多个候选项目。其中,可圈选的项数,可依据不同民情而设定不同计算公式。而在累积选举制里,选民可以投给同一个候选人许多票。
其他投票制度的选票还有其他安排,例如选民可以写下候选人的姓名,或者选民可以否决所有选项(如果成立,则选举就必须从提名阶段重新进行)。
许多选举以“一人一票”的概念进行,即每名选民的选票有相同价值。然而,例如在公司的选举里,选票的价值通常依据投票者所持有的公司股份计算,变成“一股份一选票”。
在部分选举中,选票的价值因应投票者的地位而定。而在特殊情况下,例如投票平手时,其中一名投票者获特权再投一票以决定胜负。拥有这种特权的投票者可能原先并没有投票权。
这些方法通常被称为孔多塞制,因为孔多塞准则确保了它们在大多数选举中都能获得一样的结果,也就是存在着一个孔多塞赢家。不同孔多塞制之间的差别在于出现没有选项被击败时的情况,意味着产生了一个选项之间不断击败对方的循环,这被称为孔多塞悖论。为了解决孔多塞悖论的循环,当没有孔多塞赢家出现而选择特定孔多塞版本来决定赢家的状况被称为孔多塞完结法。
许多多重获胜者选举都只简单地沿用单一获胜者选举的方法,而没有依照明确的比率。在集团投票制(Bloc voting)里,每个选区分配N个应选议席,得票数的前N名当选。由于时常会有一些压倒性的单一获胜者出现,因此集团投票并非比例制的。另外两种以多数决为基础的类似方式是复数选区单记不可让渡投票制和之前述及的累积选举制。与集团投票不同的是,在复数选区单记不可让渡投票制或累积选举制中,选民可能会采取配票或战略提名的方式而达成比例的平衡。