制模工程师认为好的冷却设计是工具车间的报价表中本来就有的。工具车间通常不优先考虑模具冷却,其设计者也不一定对热传输问题非常在行。他们的长处是切割钢铁并以尽可能经济的方法生产模具。每一方都认为另一方负责而实际上哪一方都没有负责,这个工业链中的断层导致的是一种潜在的成本。部件冷却不足会增加循环时间、废料和尺寸问题。
模具冷却的重点可以概括为下列5个类别:
1、模制塑料的热性能和模具的建造材料。
2、从熔体准备到冷却循环时间的能量平衡。
3、冷却剂流速对传热效率的影响。
4、模具温度调节器的选择。
5、最佳模具冷却的设计惯例。
在模腔中布置冷却管线和型芯钢时请考虑实际的部件结构。司空见惯的作法是,管线的布置在所有其他的设计问题之后,并且通常没有通过好的管线布置使冷却达到最佳的这个选择余地。请在设计的早期阶段预先考虑这些问题。如果部件有较厚部分,那么请考虑把该管线布置得稍微靠近墙壁一点或者布置两个小直径管线代替一根管线。深型芯的冷却一直是一个难题。随着部件的冷却,它将向型芯上收缩并脱离模腔。因此,80%的冷却来自型芯钢。然而型芯的表面与体积比最小(与模腔比较而言),并且在这个狭窄的空间里获得充足的冷却水非常难。这可以解释为什么很多型芯运行时温度很高。
GPM——或者局部冷却剂壁流速度——是优化模具冷却最重要的因素,这一点是已经确认了的。那么,是什么阻碍着对GPM的优化?答案是压降。流道中任何不必要的限制都能降低GPM。每一个软管接头、弯管、扭接软管、软管过长等等,都能构成压力损失的因素,因此,降低了GPM。限制物和压降太多会使GPM接近于0。一旦流量达到如此地步,再也不会有湍流产生,热量传输会大幅度降低。要平衡输出、输入能量,回流冷却水温度要上升。由于部件两侧的温度变量过大,这个增量会引起部件尺寸不稳定。